TTIC 31150/CMSC 31150 Mathematical Toolkit (Fall 2024)

Avrim Blum

Lecture 8: SVD applications

Recap

• SVD: Let $\sigma_1^2 \ge \cdots \ge \sigma_r^2 > 0$ be nonzero eigenvalues of $\varphi^* \varphi$ with corresponding orthonormal eigenvectors v_1, \ldots, v_r . Let $w_i = \varphi(v_i) / \sigma_i$. Then:

*w*₁, ..., *w*_r are orthonormal, *φ*(*v*_i) = *σ*_i*w*_i and *φ*^{*}_i(*w*_i) = *σ*_i*v*_i.
 φ = ∑^r_{i=1} *σ*_i |*w*_i⟩⟨*v*_i|, where |*w*_i⟩⟨*v*_i| is outer product.

• Matrix view: $A = \sum_{i=1}^{r} \sigma_i w_i v_i^* = W \Sigma V^*$, where W has w_1, \dots, w_r as columns, V^* has v_1^*, \dots, v_r^* as rows, and Σ is an $r \times r$ diagonal matrix with $\Sigma_{ii} = \sigma_i$.

Let
$$A_k = \sum_{i=1}^k \sigma_i w_i v_i^*$$
. Then:
 $\|(A-B)\|_2 = \max_{v \neq 0} \frac{\|(A-B)v\|_2}{\|v\|_2}$.
Proposition 2.1 $\|A - A_k\|_2 = \sigma_{k+1}$.

Proposition 2.4 Let $B \in \mathbb{C}^{m \times n}$ have $\operatorname{rank}(B) \leq k$ and let k < r. Then $||A - B||_2 \geq \sigma_{k+1}$.

Frobenius norm approximation

Now: show that A_k is the rank-k matrix B minimizing Frobenius norm $\sqrt{\sum_{ij}(A-B)_{ij}^2}$.

Equivalently, if we think of each row of A as a data point, we are finding the rank-k subspace that minimizes the mean squared distance of the points to that subspace $(A_k \text{ represents projecting each point in } A \text{ to this subspace})$.

Will use this view in our discussion.

To match the notes, $m \rightarrow n, n \rightarrow d$.

Let $a_1, ..., a_n \in \mathbb{R}^d$. Want to find subspace S that minimizes $\sum_{i=1}^n dist(a_i, S)^2$.

Claim 1.1 Let u_1, \ldots, u_k be an orthonormal basis for S. Then

$$(\operatorname{dist}(a_i, S))^2 = ||a_i||_2^2 - \sum_{j=1}^k \langle a_i, u_j \rangle^2.$$

Remark:

- The $dist(a_i, S)$ is independent of choice of orthonormal basis.
 - Different ways of computing it but not different quantities

Let $a_1, ..., a_n \in \mathbb{R}^d$. Want to find subspace S that minimizes $\sum_{i=1}^n dist(a_i, S)^2$.

Claim 1.1 Let u_1, \ldots, u_k be an orthonormal basis for *S*. Then

$$(\operatorname{dist}(a_i, S))^2 = ||a_i||_2^2 - \sum_{j=1}^k \langle a_i, u_j \rangle^2.$$

Proof:

- Can write $a_i = a_i^{in} + a_i^{perp}$ where a_i^{in} is the projection of a_i to S and a_i^{perp} is orthogonal to S.
- Get $\|a_i^{perp}\|^2 = \|a_i\|^2 \|a_i^{in}\|^2$.
- Formally, extending u_1, \ldots, u_k to orthonormal basis for \mathbb{R}^d and writing a_i in this basis.

Computing $dist(a_i, S)$

 $u_1, \cdots, u_k, \qquad u_{k+1}, \cdots, u_d$

• Any $u \in S$ can be written as $u \coloneqq \sum_{j=1}^{k} b_j u_j$

•
$$a_i \coloneqq \sum_{j=1}^d c_j u_j$$

• $a_i - u = \sum_{j=1}^k (c_j - b_j) u_j + \sum_{j=k+1}^d c_j u_j$

•
$$||a_i - u||^2 = \sum_{j=1}^k |c_j - b_j|^2 + \sum_{j=k+1}^d |c_j|^2$$

 $\geq \sum_{j=k+1}^d |c_j|^2$
 $= \sum_{j=1}^d |c_j|^2 - \sum_{j=1}^k |c_j|^2 = ||a_i||^2 - \sum_{j=1}^k |\langle a_i, u_j \rangle|^2$

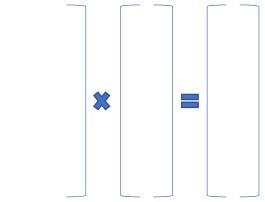
Let $a_1, ..., a_n \in \mathbb{R}^d$. Want to find subspace S that minimizes $\sum_{i=1}^n dist(a_i, S)^2$.

Claim 1.1 Let u_1, \ldots, u_k be an orthonormal basis for S. Then

$$(\operatorname{dist}(a_i, S))^2 = ||a_i||_2^2 - \sum_{j=1}^k \langle a_i, u_j \rangle^2.$$

Since the 1st term on the RHS is fixed, our goal can be viewed as: find k orthonormal vectors u_1, \ldots, u_k to maximize $\sum_{i=1}^n \sum_{j=1}^k \langle a_i, u_j \rangle^2$.

Equivalently (with A as the matrix with a_i^T as row *i*), we want to maximize $\sum_{j=1}^k \sum_{i=1}^n \langle a_i, u_j \rangle^2 = \sum_{j=1}^k ||Au_j||^2$.



Proposition 1.2 Let v_1, \ldots, v_r be the right singular vectors of A corresponding to singular values $\sigma_1 \ge \cdots \ge \sigma_r > 0$. Then, for all $k \le r$ and all orthonormal sets of vectors u_1, \ldots, u_k

$$||Au_1||_2^2 + \dots + ||Au_k||_2^2 \leq ||Av_1||_2^2 + \dots + ||Av_k||_2^2$$

Proof: by induction on *k*.

Base case (k = 1):

•
$$||Au_1||^2 = \langle Au_1, Au_1 \rangle = \langle u_1, A^T Au_1 \rangle \le \max_{v \in \mathbb{R}^d} \mathcal{R}_{A^T A}(v) = \sigma_1^2 = ||Av_1||^2.$$

Proposition 1.2 Let v_1, \ldots, v_r be the right singular vectors of A corresponding to singular values $\sigma_1 \ge \cdots \ge \sigma_r > 0$. Then, for all $k \le r$ and all orthonormal sets of vectors u_1, \ldots, u_k

$$\|Au_1\|_2^2 + \dots + \|Au_k\|_2^2 \leq \|Av_1\|_2^2 + \dots + \|Av_k\|_2^2$$

Proof: by induction on k.

General k:

- Let's define $V_{k-1}^{\perp} = \{v \in \mathbb{R}^d : \langle v, v_i \rangle = 0 \ \forall i \in \{1, \dots, k-1\}\}$, and assume for now that $u_k \in V_{k-1}^{\perp}$.
- So, $||Au_k||^2 \le \max_{v \in V_{k-1}^{\perp}, ||v||=1} ||Av||^2 = \sigma_k^2 = ||Av_k||^2$.
- And $||Au_1||^2 + \dots + ||Au_{k-1}||^2 \le ||Av_1||^2 + \dots + ||Av_{k-1}||^2$ by induction. So, done.

So, just need to argue why we can assume wlog that $u_k \in V_{k-1}^{\perp}$.

Claim 1.3 Given an orthonormal set u_1, \ldots, u_k , there exist orthonormal vectors u'_1, \ldots, u'_k such that

- $u'_k \in V_{k-1}^{\perp}$.
- Span $(u_1,\ldots,u_k) =$ Span (u'_1,\ldots,u'_k) .
- $\|Au_1\|_2^2 + \dots + \|Au_k\|_2^2 = \|Au_1'\|_2^2 + \dots + \|Au_k'\|_2^2.$

Proof (similar to a proof we used last class):

- Since dim $(V_{k-1}^{\perp}) = d k + 1$ and dim $(\text{Span}(u_1, \dots, u_k)) = k$, there must exist some u'_k in the intersection with $||u'_k|| = 1$.
- Complete to an orthonormal basis u'_1, \ldots, u'_k of Span (u_1, \ldots, u_k) .
- Satisfies 3rd property because LHS and RHS both equal the sum of squared lengths of the projections of the rows of A into this k-dimensional subspace.

Gershgorin Disc Theorem

Theorem 2.1 (Gershgorin Disc Theorem) Let $M \in \mathbb{C}^{n \times n}$. Let $R_i = \sum_{j \neq i} |M_{ij}|$. Define the set

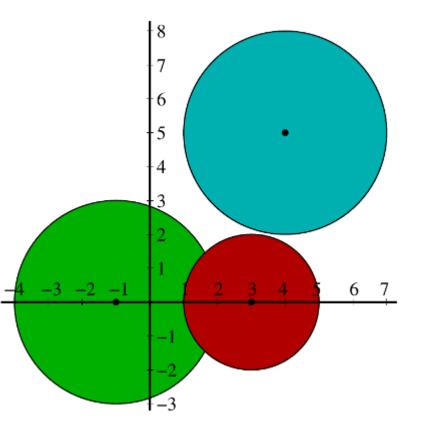
$$\mathrm{Disc}(M_{ii}, R_i) := \{ z \in \mathbb{C} : |z - M_{ii}| \le R_i \} .$$

If λ *is an eigenvalue of* M*, then*

$$\lambda \in \bigcup_{i=1}^n \operatorname{Disc}(M_{ii}, R_i).$$

If matrix is close to being diagonal,

then eigenvalues are close to the diagonal entries.



source: golem.ph.utexas.edu

Sum of absolute values of offdiagonal entries in row *i*.

Gershgorin Disc Theorem

Sum of absolute values of offdiagonal entries in row *i*.

Theorem 2.1 (Gershgorin Disc Theorem) Let $M \in \mathbb{C}^{n \times n}$. Let $R_i = \sum_{j \neq i} |M_{ij}|$. Define the set

$$\mathrm{Disc}(M_{ii}, R_i) := \{ z \in \mathbb{C} : |z - M_{ii}| \le R_i \} .$$

If λ *is an eigenvalue of* M*, then*

$$\lambda \in \bigcup_{i=1}^n \operatorname{Disc}(M_{ii}, R_i).$$

Input:

	(5 0.1 0.1)
eigenvalues	$\left(\begin{array}{rrr} -0.1 & 6 & 0.1 \\ 0.1 & 0.1 & 7 \end{array}\right)$
	(0.1 0.1 7)

Results:

 $\lambda_1\approx 7.01475$

 $\lambda_2\approx 5.98019$

 $\lambda_3 \approx 5.00506$

If matrix was perfectly diagonal, then eigenvalues would be exactly the diagonal entries.

Proof strategy: for eigenvector x, pick coordinate x_{i_0} of largest absolute value. Show eigenvalue close to $M_{i_0i_0}$.

Gershgorin Disc Theorem

Sum of absolute values of offdiagonal entries in row *i*.

Theorem 2.1 (Gershgorin Disc Theorem) Let $M \in \mathbb{C}^{n \times n}$. Let $R_i = \sum_{j \neq i} |M_{ij}|$. Define the set

$$Disc(M_{ii}, R_i) := \{ z \in \mathbb{C} : |z - M_{ii}| \le R_i \} .$$

If λ is an eigenvalue of M, then

$$\lambda \in \bigcup_{i=1}^n \operatorname{Disc}(M_{ii}, R_i).$$

Proof:

• Let x be an eigenvector with eigenvalue λ . Let x_{i_0} be coordinate of largest absolute value.

•
$$\sum_{j} M_{i_0 j} x_j = \lambda x_{i_0}$$
. So, $\sum_{j \neq i_0} M_{i_0 j} x_j = \lambda x_{i_0} - M_{i_0 i_0} x_{i_0}$.

• So,
$$|\lambda - M_{i_0 i_0}| \le \sum_{j \ne i_0} \frac{|M_{i_0 j}| |x_j|}{|x_{i_0}|} \le \sum_{j \ne i_0} |M_{i_0 j}| = R_{i_0}.$$

That's it for today

- Hwk2 due tonight.
- Midterm on Monday.
- Good luck!