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Lecture 8: SVD applications



Recap

* SVD: Let 6? > --- > ¢> > 0 be nonzero eigenvalues of ¢*¢ with corresponding
orthonormal eigenvectors vy, ..., V. Let w; = @(v;)/0;. Then:

> Wi, ..., W, are orthonormal, ¢ (v;) = o;w; and @; (w;) = o;v;.
> Q= Zl 1 0; |[wi(v;|, where |w;){(v;| is outer product.

* Matrix view: A = Y,;_, o;w;v; = WZV*, where W has wy, ..., w,- as columns, V*
has v{, ..., v asrows, and X i |s an r X r diagonal matrix with X;; = o;.
* Let 4, = {‘ 1 0iw;v;. Then:
[(A-B)l, = max[ A2
Proposition 2.1 [|[A — Aill, = 0p1. oo el

Proposition 2.4 Let B € C"*" have rank(B) < kand let k < r. Then ||A — B||, > 041



Frobenius norm approximation

Now: show that Ay is the rank-k matrix B minimizing Frobenius norm \/Zij(A — B)l-jz.

Equivalently, if we think of each row of A as a data point, we are finding the rank-k
subspace that minimizes the mean squared distance of the points to that subspace
(A; represents projecting each pointin A to this subspace).

Will use this view in our discussion.

To match the notes, m » n,n — d.



Least squares approximation

Let ay, ..., a, € R%. Want to find subspace S that minimizes Y1 , dist(a;, $)2.

Claim 1.1 Let uy,. .., uy be an orthonormal basis for S. Then

k
(dist(a;,9))* = llaill3 — Y (as,u;)* .

j=1

Remark:

* The dist(a;, S) is independent of choice of orthonormal basis.
= Different ways of computing it but not different quantities



Least squares approximation

Let ay, ..., a, € R%. Want to find subspace S that minimizes Y1 , dist(a;, $)2.

Claim 1.1 Let uy,. .., uy be an orthonormal basis for S. Then

k

(dist(a;,S))> = |aillz — Y {(ai, u;)

j=1

2

Proof:

perp

* Canwritea; = af" + aferp where a{-:" is the projection of a; to S and a; is orthogonal to S.

. Get | ||” = lla;lI? — [|ain||’

* Formally, extending u4, ..., u; to orthonormal basis for R4 and writing a; in this basis.



Computing dist(a;, S)

Up, o U, Ugar, o, Ug
* Any u € S can be written as u := ;-‘=1 b; u;
* ;= Nja1 G Y
cq; —uU = ;Ll(cj — bj) uj + Zj-l=k+1 Ci U;
ella; —ull? = 51| — b|” + X I 12
= Z?=k+1 |Cj|2

= 3 112 = T 1o 12 = aill? = B |{aw w)|



Least squares approximation

Let ay, ..., a, € R%. Want to find subspace S that minimizes Y1 , dist(a;, $)2.

Claim 1.1 Let uy,. .., uy be an orthonormal basis for S. Then

k

(dist(a;,S))> = |aillz — Y {(ai, u;)

j=1

2

Since the 15t term on the RHS is fixed, our goal can be viewed as: find k orthonormal
2
vectors uy, ..., Uy to maximize }.7*- 4 Zle(ai,uj) .

Equivalently (with A as the matrix with a'l-r as row i),

we want to maximize 25‘;1 > {ai, uj)z = lenAuj”Z.




Least squares approximation

Proposition 1.2 Let vy, ..., v, be the right singular vectors of A corresponding to singular values
oy > -+ 2 0 > 0. Then, for all k < r and all orthonormal sets of vectors uy, ..., uy

2 2 2 2
|Aurlly +- -+ [[Au][y < [[Avr]l3 4 - - + [[Avk][3

Proof: by induction on k.
Base case (k = 1):

g ||14U1||2 = (Auq, Auq) = (u1,ATAu1) = 122%)‘% RATA(U) = 012 = ||AV1||2-



Least squares approximation

Proposition 1.2 Let vy, ..., v, be the right singular vectors of A corresponding to singular values
oy > -+ 2 0 > 0. Then, for all k < r and all orthonormal sets of vectors uy, ..., uy

2 2 2 2
|Aurlly +- -+ [[Au][y < [[Avr]l3 4 - - + [[Avk][3

Proof: by induction on k.

General k:

* Let’s define V-, = {v € R%:(v,v;) = 0 Vi € {1, ..., k — 1}}, and assume for now that

* So, [Au |l < max  [|Av||? = g = [|Avil?.
veEVE_ 1 llv]=1

« And [|[Auq||? + -+ + [|Aug—11I? < [|Av||? + -+ + ||Avs_1|I? by induction. So, done.

So, just need to argue why we can assume wlog that u,;, € Vkl_l.



Least squares approximation

Claim 1.3 Given an orthonormal set uy, ..., uy, there exist orthonormal vectors ul,...,u; such
that

- u, € V- ..
- Span (uq,...,ux) = Span (ui, L, MD

2 2 2 2
- |JAur ][5+ -+ | Aug]ly; = ||Auy|; 4+ + ”A“Hb'

Proof (similar to a proof we used last class):

e Since dim(Vi—;) = d — k + 1 and dim(Span(uy, ..., ux)) = k, there must exist some
Uy in the intersection with [|ug || = 1.

* Complete to an orthonormal basis uy, ..., u;, of Span(uy, ..., U).

* Satisfies 3" property because LHS and RHS both equal the sum of squared lengths of
the projections of the rows of A into this k-dimensional subspace.



diagonal entries in row i.

GerShgorln DlSC Theorem [ Sum of absolute values of off- ]

Theorem 2.1 (Gershgorin Disc Theorem) Let M € C"*". Let R; = Y., .; |M;j|. Define the
set
DiSC(Mﬁ,RI-) = {Z cC: |2 — Mjf| < Ri} ,

If A is an eigenvalue of M, then

n
A € | JDise(Mj;, R;).
i=1

If matrix is close to being diagonal,

then eigenvalues are close to the diagonal entries.

-3

source: golem.ph.utexas.edu



GerShgorln DlSC Theorem [ Sum of absolute values of off-

diagonal entries in row i.

|

Theorem 2.1 (Gershgorin Disc Theorem) Let M € C"*". Let R; = Y., .; |M;j|. Define the
set
DiSC(MH,R,') = {Z c(C: |Z — M,'j.'| < R}} :

If A is an eigenvalue of M, then

A € | JDise(Mj;, R;).
=1

Input:
5 01 01 If matrix was perfectly.diagonal, thgn eigenvalues
eigenvalues [_0.1 6 o.1l would be exactly the diagonal entries.
0.1 0.1 7

Faclte Proof strategy: for eigenvector x, pick coordinate
x; of largest absolute value. Show eigenvalue

Ay =~ 7.01475 IO to M
ciose 1o igip*

1, ~ 5.98019

13 ~ 5.00506



diagonal entries in row i.

GerSthrln DlSC Theorem [ Sum of absolute values of off- J

Theorem 2.1 (Gershgorin Disc Theorem) Let M € C"™". Let R; =} ;4 |M;;|. Define the

set

1 |
Disc(M;;, R;) = {ze€C:|z— M;| <R;}.
If A is an eigenvalue of M, then

A E UDiSC(MH, R!)

Proof: 1=1

* Let x be an eigenvector with eigenvalue A. Let x; be coordinate of largest absolute value.

Z Mlo]x] = Axlo >0, Zjil Mlo]x] - Axlo - Mloloxlo

. SO |A Mlolol < Z |Ml0]||x]| < Zj-'/:iolMiojl — RiO'

J#lo |xi0|



That’s it for today

* Hwk2 due tonight.

* Midterm on Monday.

* Good luck!
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